Human fMRI at 9.4 T: Preliminary Results
نویسندگان
چکیده
Introduction: With increasing field, the MR signal-to-noise ratio is expected to grow linearly, while a BOLD increase of more than linear is expected [1]. In addition, a higher emphasis on signal from microvasculature is predicted, especially for SE-EPI [2,3], while GE EPI remains more specific to the macrovasculature. Here, a field strength of 9.4 T is used for the first time to measure BOLD activation during finger tapping of a human subject. To examine the signal contributions of tissue and veins, the functional maps were overlaid on T2*-weighted GRE images revealing venous vasculature at high detail. Co-registration of both image modalities demonstrates where the functional signal coincides with venous structures.
منابع مشابه
EEG acquisition in ultra-high static magnetic fields up to 9.4 T
The simultaneous acquisition of electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data has gained momentum in recent years due to the synergistic effects of the two modalities with regard to temporal and spatial resolution. Currently, only EEG-data recorded in fields of up to 7 T have been reported. We investigated the feasibility of recording EEG inside a 9.4 T sta...
متن کاملRecording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording ...
متن کاملDiffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes.
The nature of vascular contribution to blood oxygenation level dependent (BOLD) contrast used in functional MRI (fMRI) is poorly understood. To investigate vascular contributions at an ultrahigh magnetic field of 9.4 T, diffusion-weighted fMRI techniques were used in a rat forepaw stimulation model. Tissue and blood T(2) values were measured to optimize the echo time for fMRI. The T(2) of arter...
متن کاملAn fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli
ABSTRACT Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF). Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd. Results: Average percentage BOLD signa...
متن کاملEcho-planar BOLD fMRI of mice on a narrow-bore 9.4 T magnet.
The feasibility of BOLD fMRI in association with electrical somatosensory stimulation on spontaneously breathing, isoflurane-anesthetized mice was investigated using spin-echo, echo-planar imaging (EPI) on a vertical narrow-bore 9.4 T magnet. Three experiments were performed to derive an optimal fMRI protocol. In Experiment 1 (n = 9), spin-echo BOLD responses to 10% CO2 challenge under graded i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010